Linked Matrix Factorization
نویسندگان
چکیده
In recent years, a number of methods have been developed for the dimension reduction and decomposition of multiple linked high-content data matrices. Typically these methods assume that just one dimension, rows or columns, is shared among the data sources. This shared dimension may represent common features that are measured for different sample sets (i.e., horizontal integration) or a common set of samples with measurements for different feature sets (i.e., vertical integration). In this article we introduce an approach for simultaneous horizontal and vertical integration, termed Linked Matrix Factorization (LMF), for the more general situation where some matrices share rows (e.g., features) and some share columns (e.g., samples). Our motivating application is a cytotoxicity study with accompanying genomic and molecular chemical attribute data. In this data set, the toxicity matrix (cell lines × chemicals) shares its sample set with a genotype matrix (cell lines × SNPs), and shares its feature set with a chemical molecular attribute matrix (chemicals × attributes). LMF gives a unified low-rank factorization of these three matrices, which allows for the decomposition of systematic variation that is shared among the three matrices and systematic variation that is specific to each matrix. This may be used for efficient dimension reduction, exploratory visualization, and the imputation of missing data even when entire rows or columns are missing from a constituent data matrix. We present theoretical results concerning the uniqueness, identifiability, and minimal parametrization of LMF, and evaluate it with extensive simulation studies.
منابع مشابه
ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کامل